CW回路で「10まんボルト(100kV)」を撃つ

ご注意

  • 言うまでもないですが、感電すると非常に危険です。電気について知識の無い方はやらないでください。実践される場合は自己責任でお願いします。
  • 安全対策についても記載しておりますが、筆者は所詮素人なのでこれで正しいかは保証できません。よく勉強して十分な安全対策を施してください。
  • 固定の配線や設備を敷設したり弄ったりせず、持ち運び可能な機材を用いて自宅等で個人的に実験する限りは法的な問題は無いと思われますが、この範囲を超える場合、電気工事士の資格や消防への届け出が必要となる場合があります。ご自身でよく確認してください。
  • 100kVレベルのスパークは爆竹のような大きな音がします。近隣の迷惑にならないよう注意して下さい。

背景

始まりはこのツイートでした。
始めはただ小さなスパークを見て面白がっていたんですが、そのうちエスカレートして「10まんボルト」を超えるのが目標の1つになっていました。詳細を追いたい方は Twitterモーメント を御覧ください。

10万ボルトを作る方法

さて、10万ボルトを作る方法はいくつかあるわけですが、比較的簡単にやれる方法としては「テスラコイル」「マルクスジェネレータ」「コッククロフト・ウォルトン回路」あたりでしょうか。

テスラコイル

テスラコイルは空芯式の共振変圧器です。回転式のスパークギャップや半導体を用いて1次コイルを駆動し、2次コイルと浮遊容量で共振を起こすことで、高周波・高電圧が得られます。製作にはノウハウが必要となりますが、放電は派手で、様々なパフォーマンスにも用いられます。

マルクスジェネレータ

マルクスジェネレータは、高圧直流電源に抵抗・コンデンサ・スパークギャップをハシゴ状に繋いだ回路を接続するものです。抵抗を介してコンデンサが充電されていき、一定の電圧を超えるとスパークギャップを介して全てのコンデンサが直列に繋がって高電圧が生まれます。高圧直流電源にはCRT用のFBTなどを流用することができます。コンデンサの充電に時間がかかるため、スパークは散発的になります。実施例としては YouTubeにたくさん動画があります

コッククロフト・ウォルトン回路(CW回路)

CW回路は交流電源にダイオードとコンデンサをハシゴ状に繋いだ回路を接続するものです。交流電流の極性が入れ替わるたびにハシゴの左右のコンデンサが交互に充電されていきます。スパークの間隔は短く、条件次第でアーク放電も可能ですが、100kVレベルの高電圧を得ようとすると強力な交流電源の確保がネックになります。

今回はより強力な放電が見たいので、CW回路を作ることにしました。

全体構成

CW回路の段数

CW回路は理想的には段数を増やすほど電圧を稼げますが、現実には増やすほど損失も増えるため、意味があるのは10~20段程度までだと思います。今回は10段の回路を組みました。以前行った実験の結果から、入力電圧の10倍前後まで昇圧できると考えました。

CW回路のための交流電源

CW回路で昇圧できるのが10倍程度とすると、100kVを得るには、10kV程度を出力できる交流電源が必要になります。

ネオントランス

ネオントランスはネオンサインを点灯させるためのトランスで、AC100Vから9~15kV程度を得ることができます。一応通販などでも入手できますが、それなりに高価です。中古品を買うことになるでしょう。50Hz用と60Hz用があるので注意してください。

自作トランス

高圧トランスを自作することも可能です。今回は 以前自作したフライバックトランス を電源として使用しました。15kV程度を得ることができます。

CW回路に使用する部品

CW回路に使用するコンデンサとダイオードには入力の2倍の電圧がかかりますので、耐圧もそれだけ必要になります。今回使用したのは以下の部品です。いずれもAliExpressで購入しました。
  • コンデンサ: 型番不明(1nF, 30kV)
  • ダイオード: JB289(100mA, 35kV)

絶縁と安全対策

CW回路自身の絶縁

今回使用した部品は、素子自身の耐圧よりもリード線の間の空気の絶縁破壊電圧の方が低いため、空気中では耐圧まで電圧をかけることができません。そこで今回は回路を5段ずつに分けてタッパーに入れ、それぞれ絶縁油で満たしました。容器の底にCW回路をベタ置きすると容器の外との間で絶縁破壊する恐れがあると考え、回路と容器の間にゴム足を挟んで底から少し浮かせました(写真赤矢印)。


絶縁油には、以前トランスを製作した際に使用したシリコーンオイル を使用しました。エンジンオイルなどでもいいと思います。

配線の絶縁

数十kVを超えてくると、今まで電気を通さないと思っていた物も実はそうではなかったというのが目に見えるようになってきます。盲点になりやすいのが木でできた机やフローリングだと思います。ビニル線などを机や床に這わせると被覆が絶縁破壊して、机や床との間でスパークやアークが生じます。高圧になる機器やケーブルの下には必ずガイシを、無ければガラスや陶器製の食器などを敷くか、ケーブル自体を空中に浮かせて床と十分な絶縁距離をとってください。

電子機器やその配線のそばで実験しない

机などの上で実験していると机自体が帯電して高電位になります。机と周囲の配線などとの間で放電が生じてしまうと、離れたところにある電子機器でもいとも簡単に壊れます。私はLANハブを1台壊しました。机に導電マットなどを敷いてアーシングするのがよいかもしれませんが、そうすると高圧回路とマットとの間で放電が生じやすくなるので一層絶縁に気を遣うかもしれません。いずれにしても、とにかく電子機器やその配線の近くでは実験をすべきではありません。

電源スイッチを主電源+トリガーの二重にする

もし感電すると、体の筋肉が言うことをきかなくなる可能性があります。そうなると電源スイッチを操作できず、さらに深刻な事態に陥る可能性があります。押しボタン式のトリガーにしておけば指さえ離れれば通電は止まるのでいくらか安全です。ただ、ボタン式の場合うっかり手や足が当たって押してしまう可能性があるので、それと別にトグル式の主電源(スイッチ付きACタップなど)を設けておくべきだと思います。

トリガーに使用するボタンは接点の容量に注意

ボタンの接点には数A流れます。大容量の平滑コンデンサを載せたインバーターなどを使用している場合は、さらに大きな突入電流が流れます。押しボタンの接点の容量を超える電流を開閉すると接点が溶着したり内部のバネがヘタったりして回路を遮断できなくなる恐れがあり、危険ですので注意して下さい。ただ、数十Aを安全に開閉できる押しボタンというのはあまり入手性は良くないと思います。今回は 秋月にある車載用の大容量リレー でトリガースイッチを作りました。フタ付きにしておけば、うっかり押してしまう事故の可能性も減らせます。

むやみに近づかない・触らない・絶縁手袋の着用

当たり前ですが、高圧になる部分にむやみに近づくと非常に危険です。触れる際には主電源がOFFになっていることを必ず確認してください。また、通電後はCW回路のコンデンサに電荷が残っており高圧になっていますので、必ず電極をショートさせるなどして放電させてから触れて下さい。触る際はゴム製の絶縁手袋を着用することをお勧めします。

実験

以下の動画の音声は相当マイルドになっていますが、冒頭にも書いたようにかなり大きな音がします。集合住宅などでやると爆竹などと間違われるかもしれません。騒音には注意して下さい。

100kV

この動画ではまだCW回路を油に漬けていませんが、不安定で、ちょっとでも条件が変わるとすぐCW回路の段間で放電が起きてしまいました。

120kV

YouTube動画

コメント

このブログの人気の投稿

WindowsのIMEの状態をLEDで表示するガジェット

油入式フライバックトランスの製作